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Experiments on the stability of sinusoidal flow
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The instabilities in a sinusoidally oscillating non-separated flow over smooth circular
cylinders in the range of Keulegan–Carpenter numbers, K , from about 0.02 to 1
and Stokes numbers, β, from about 103 to 1.4 × 106 have been observed from
inception to chaos using several high-speed imagers and laser-induced fluorescence.
The instabilities ranged from small quasi-coherent structures, as in Stokes flow over
a flat wall (Sarpkaya 1993), to three-dimensional spanwise perturbations because
of the centrifugal forces induced by the curvature of the boundary layer (Taylor–
Görtler instability). These gave rise to streamwise-oriented counter-rotating vortices
or mushroom-shaped coherent structures as K approached the Kh values theoretically
predicted by Hall (1984). Further increases in K for a given β led first to complex
interactions between the coherent structures and then to chaotic motion. The mapping
of the observations led to the delineation of four states of flow in the (K, β)-plane:
stable, marginal, unstable, and chaotic.

1. Introduction
Sinusoidally oscillating flow about a circular cylinder or the sinusoidal motion of

a cylinder in a viscous fluid otherwise at rest is of practical as well as fundamental
importance because of its relevance to the design of structures in the marine en-
vironment (Sarpkaya 1976, 1986), to the understanding of beach processes and bed
ripples (Lyne 1971; Hara & Mei 1990a, b; Scandura, Vittorio & Blondeaux 2000
and references therein), and to the quantification of g-jitter effects on crystal growth
and natural convection in microgravity environment (Volfson & Vinals 2001 and
references therein). It appears that the numerical simulation of the more realistic
three-dimensional flows encountered in practical applications is beyond the power of
present computers.

The experiments described herein deal more specifically with the classical problem
of Schlichting (1932, 1979) who has shown that the oscillatory motion of a cylinder
induces a steady secondary flow outside the boundary layer, and presents typical
patterns of such a flow. Subsequently, Batchelor (1967) and Gershuni & Lybimov
(1988) arrived at similar conclusions. It is well known that in a sinusoidally oscillating
flow over a smooth circular cylinder the structure of the flow depends primarily on the
Keulegan–Carpenter number K = 2πA/D, where A is the amplitude of the relative
motion and D is the cylinder diameter, and the Stokes number β = fD2/ν, where f
is the frequency of flow (or cylinder) oscillation and ν the kinematic viscosity of the
fluid.

The first experiments of particular relevance to this paper were conducted by Honji
(1981) in the range of Stokes numbers from 68.8 to 700. He visualized the flow around
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a transversely oscillating cylinder in a fluid otherwise at rest and observed, in a plane
normal to the direction of cylinder motion, that mushroom-shaped vortices arrange
themselves alternately in a vertical double row, i.e. along the crowns of the cylinder
where the local ambient velocity is maximum. These vortices are then convected along
the direction of oscillation to create equally spaced ‘integrated streak sheets’ with
their contra-rotating vortices. Sarpkaya (1986) extended the range of observations to
higher β values (about 5500). Tatsuno & Bearman (1990) made a visual study of the
oscillatory flow in the range 1.6 < K < 15 and 5 < β < 160. The present experiments
were conducted at β values two to three orders of magnitude larger than those of
Honji using considerably larger cylinders, facilities, and frequencies of oscillation.

Hall (1984) carried out a stability analysis of the unsteady attached boundary layer
on a cylinder oscillating transversely in a viscous fluid in both linear and weakly
nonlinear regimes. In order to simplify the problem, Hall assumed that the oscillation
frequency is large. This reduced the basic stability problem (dependent upon two
spatial coordinates and time) to a system dependent only on a radial variable and
time. Then the primary objective of the analysis became the determination of the
parameter range in which the two-dimensional solution is a stable solution of the
Navier–Stokes equations. This led to the Kh–β relationship given by

Kh = 5.78β−1/4(1 + 0.21β−1/4 + · · ·), (1.1)

where Kh(β) will be called the ‘Hall line’. It represents a marginal condition be-
tween a featureless two-dimensional flow and an unstable region (vortex interactions,
turbulence and separation). It does not represent a critical line, say Kcr , between a
region of absolute stability and the growth of three-dimensional instabilities leading
to mushroom-shaped structures. As noted by Hara & Mei (1990a), Khβ

1/4 = 5.78,
represents, as a first approximation to equation (1.1), the fact that an instability
of centrifugal type can occur on a two-dimensional flow when the Taylor number
(Ta = A2/Dδ ≡ Kβ1/4) exceeds a certain threshold where δ = (ν/ω)1/2 is propor-
tional to the viscous boundary layer thickness and ω (= 2πf) is the angular frequency.
The inception of instabilities in a three-dimensional periodic flow due to the presence
of streamwise vorticity (as in Taylor–Görtler vortices) has not yet been investigated
analytically or experimentally.

The fairly regular mushroom-shaped structures observed by Honji were named the
‘Honji instability’ by Sarpkaya (1986). They will now be renamed either the ‘Honji-type
coherent structures’ or ‘mushroom-shaped structures’ or, simply, ‘coherent structures,
CS’, in preparation for the discussion of irregular or transitional ‘quasi-coherent
structures, QCS’ occurring over a finite region of K values, extending from a critical
value of Kcr to Kh, and culminating in nearly uniform mushroom-shaped structures.
With a small increase in K , the vortices begin to interact with each other and the
flow transitions into turbulence, with no apparent periodicity along the crown of
the cylinder. Thus, equation (1.1) represents a narrow band in which the mushroom-
shaped coherent structures reach their ultimate strength and uniformity along the
crown of the cylinder as evidenced by the fact that (1.1) is entirely consistent with the
experiments of Honji (1981) within the range of comparison (68.8 < β < 700). The
structures in the region K > Kh will be discussed later.

The purpose of the present paper is to observe the instabilities in a sinusoidally os-
cillating non-separated flow past smooth circular cylinders in the range of Keulegan–
Carpenter numbers from about 0.02 to 1 and Stokes numbers from about 103 to
1.4 × 106. The boundary layer structures have been examined by means of laser-
induced fluorescence. First, the behaviour of the most representative coherent struc-



Sinusoidal flow over a circular cylinder 159

tures near Hall’s (1984) theoretical prediction (i.e. at K ≈ Kh) are presented. Then,
the inception of instabilities near the critical Kcr and the evolution of QCS resembling
incomplete mushrooms in the range Kcr < K < Kh are discussed. Finally, for K > Kh

the mutual interaction of the neighbouring mushrooms and the onset of chaotic
motion are described in as much detail as possible through the use of representa-
tive still photographs. These are followed by the delineation of the stable, marginal,
unstable and chaotic regions of flow in the (K, β)-plane with the hope that direct
numerical simulations by means of Navier–Stokes and continuity equations will not
only confirm them but also provide additional details on those flow features which
cannot yet be measured or visualized.

2. Experimental apparatus and procedures
The primary goals for the equipment were to achieve a relatively large β in

non-separated sinusoidally oscillating flow relative to circular cylinders in the range
0.02 < K < 1 and to use flow visualization to delineate the inception and evolution
of flow structures in the boundary layer.

The experiments were conducted in three different facilities: a U-shaped water
tunnel where the flow oscillated about cylinders at a constant frequency, in a rec-
tangular basin where the test cylinder was subjected to forced oscillations at desired
frequencies, and in a larger reservoir where the horizontally mounted test cylinders
were suspended between two (sufficiently large) end plates of a vertical pendulum and
subjected to resonant forced oscillations. The features common to all three facilities
are summarized at the end of the description of the third facility.

The working section of the U-shaped water tunnel is 145 cm high, 92 cm wide,
and 10.7 m long. The two 6.7 m vertical sections are 183 cm by 92 cm each. The
oscillatory flow in the tunnel is driven by a computer-controlled pneumatic system.
The spectra of the velocity at various positions in the test section (obtained through
the use of a three-dimensional LDV system) have confirmed that the contributions
of the second and higher harmonics are negligible. The transient period to reach a
constant K from rest varied from six to ten cycles for K < 1, with the fluid oscillating
at its resonant frequency of f = 0.187 Hz. This tunnel is used for cylinders with
D < 170 mm. Additional details of the design and operation of the tunnel are given
elsewhere (Sarpkaya 1976, 1977).

Normally, the amplitude of oscillations and hence the Keulegan–Carpenter number
are changed from one value to another by enlarging or constricting a two-dimensional
orifice in the pneumatic system. For the present experiments, however, a particular
Keulegan–Carpenter number was set up in the tunnel either by gradually increasing
the prevailing K or by starting the flow from rest (after a period of about an hour).
The reasons for the two flow-establishment schemes were partly to explore the history
effects on the evolution of the flow structures and partly to replenish the fluorescent
dye which dissolves after many cycles of oscillation. Extensive observations and
tape recordings with both schemes have shown that the instabilities did not develop
immediately after arriving at a new K value but took about 10 cycles to reach a
quasi-steady state. The incipient structure and subsequent evolution of the resulting
instabilities were so similar that an independent observer could not have deduced
from observations and viewing of the video tapes how the new flow state was created,
i.e. no history affects were observed.

The second facility is a 4.6 m long, 92 cm wide, and 183 cm high rectangular basin.
The test cylinders (D < 260 mm) were subjected to forced oscillations at desired
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Figure 1. The third facility: a schematic drawing of the oscillating pendulum
(all dimensions are in mm).

frequencies (f < 4 Hz) using a simple scotch yoke mechanism mounted rigidly on
top of the basin. The cylinders (909 mm long) were rigidly attached to streamlined
circular side plates of diameter 2.5D. The maximum amplitude of oscillation was kept
smaller than 25 mm.

The third facility (figure 1) is very similar to the second one, except for its size. It is
a 330 cm deep, 103 cm wide, and 457 cm long tank with several removable tempered-
glass windows (at the cylinder level), large enough for viewing and photographing.
The pendulum was made of two streamlined side plates. The lower circular parts of
each side plate also served as end plates for the cylinders as in the second facility.
The top of each plate was welded to a 25 mm thick steel plate, 14 cm above the water
level. Then, two wide-flange I-beams (91.5 cm long) were bolted to the top of the
25 mm metal plate and to the support structure above. The I-beams were changed as
needed to achieve the desired natural frequency and the oscillation amplitude (at the
cylinder axis) in water.

The test cylinders (20 cm < D < 50 cm, with L = 1018 mm) were subjected to forced
oscillations through the use of a scotch yoke and servo-controlled motor, connected
to the pendulum at the level of the 25 mm steel plate. An LDV (a linear differential
displacement transducer) and an accelerometer were attached to the pendulum at
the cylinder level (160 cm above the tank bottom). The spectrum of the accelerations
show single peaks with no secondary frequencies for f < 6 Hz and A < 40 mm.

One half of the 14 cm space between the water surface and the steel plate was used
to mount a small vertical tube of about 20 cm long as housing for the lenses and
the head of the fibre-optic cable. Its top end (7 cm below the steel plate) was open
and the bottom end (covered and sealed with a circular Plexiglas sheet) pierced the
water surface (about 13 cm) through the Plexiglas cover on top of the reservoir. It
was constructed such that it can be moved along a line in the mid-plane normal to
the axis of the test cylinder and tilted up to ±10◦. The cylinders were rigidly attached
to the end plates (the pendulum) to minimize the interference effects. A clearance of
about 12 mm was provided between an end plate and the tank wall.

Pluck tests (subjecting a body to damped oscillations by releasing it from an
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initially displaced position) were not used. The reason for this is primarily that the
larger the cylinder the longer the time (the number of cycles of oscillation) taken for
the establishment of the mushroom-shaped structures. Cylinders subjected to pluck
tests did not always accord the opportunity for sufficiently long observations and
recording at a given K . The rapidly decaying transient motions have transformed
them into irregular vortical forms.

The most important common features of the facilities were as follows. A cross-
flow micro-filtration and de-aeration system was used to remove any suspended fine
particles from the water after it was discovered that the presence of small air bubbles
and the attachment of some of them to the cylinder surface could interfere with or
alter the character of the coherent or quasi-coherent structures. The filtration system
was turned off during the experiments.

All cylinders were made absolutely airtight and neutrally buoyant when submerged.
They were painted matte black and polished carefully with velvet. The thickness of
the dye layer, determined from the dye volume introduced and the area it spread on
the cylinder, was about 0.4 mm. In the second and third facilities the top of the water
surface was covered with Plexiglas plates of about 12 mm thick (25 mm below the free
surface) with appropriate size openings for the suspension mechanisms, to prevent
free-surface waves from developing and affecting the visualizations while model is
oscillating.

Two types of laser light sheets were used. The first was a portable laser sheet
system, similar to that proposed by Koga, Abrahamson & Eaton (1987). It was set up
to create a thin sheet of nearly collimated continuous light which can be positioned
at any desired angle relative to the cylinder or the ambient flow as shown in Sarpkaya
(1993). The thickness of the light sheet was varied from about 1.5 mm to 2 mm. It
was used for relatively small frequencies of flow oscillation. The second light sheet
was provided by a Yag laser of a digital particle image velocimeter (DPIV) system,
pulsing at 32 ms intervals for periods of 7 ns. This provided an intense light sheet
approximately l.5 mm thick, and allowed visualization of flow structures along the
crown of the cylinder. A digital video camera (with frame rates from 250 to 8000
frames/s and shutter speeds from 1/60 to 1/10 000 s) was used to record images on
memory cards which were subsequently downloaded onto S-VHS tapes.

Normally, the light sheet was placed in a vertical plane passing through the crown
and the axis of the cylinder. From time to time, the light sheet was tilted 5◦ to
10◦ forward or backward, to one or the other side of the crown, to photograph the
counter-rotating streamwise vortices simultaneously with the mushrooms in the glow
reflected from the cylinder. Fluorescent dyes (a mixture of water drawn out of the
tanks and a small amount of fluorescein or Rhodamine powder, strained several times
through a fine cloth) were used primarily because they do not change the viscosity and
density of water and their molecular diffusion and miscible dispersion are much higher
than that of the ‘smoke’ produced from a metallic compound through electrolytic
precipitation. The dye was introduced along a centrally located 20 cm to 40 cm long
section of the cylinder with a rotatable and horizontally retractable, L-shaped, remote
arm (a 50 cm long, 3 mm diameter, closed-end tube, with linearly spaced rectangular
slots along its length). When the arm was rotated upward and retracted, it rested at the
bottom of the Plexiglas cover. When rotated downward, the spacing between the dye
tube and the crown of the cylinder was less than 1 mm. Then the dye was deposited
on the cylinder with a very small differential hydrostatic pressure between the crown
and the external dye reservoir. In a few cycles of oscillation, the dye distributed
smoothly and uniformly over a known area and remained there until upward fluid
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Figure 2. Stokes number versus Keulegan–Carpenter number. The line marked S (denoting stability)
defines the marginal region. It separates the stable region on the left from the unstable region on
the right. The line H (called the Hall line) is given by equation (1.1), after Hall (1984).

motions caused parts of it to lift to show the cross-sections of the instabilities. The
evolution of the resulting structures was recorded on video tapes or memory cards,
depending on the frequency of oscillation of the flow or the cylinder and the camera
used, simultaneously with the instantaneous acceleration of the ambient flow or the
amplitude of oscillation of the cylinder.

3. Results and discussion
In preparation for the presentation of the results, the (K, β)-plane was divided (at

least initially) into three regions as shown in figure 2. The line labelled H, after Hall
(1984), represents equation (1.1). Each K value on the Hall line corresponds to a Kh

value at which the mushroom-shaped coherent structures occur. The line marked S
(denoting stability) defines the marginal region. It separates the stable region on the
left from the unstable region on the right. It will be shown that there is a stable
region (K < Kcr) in which there are no structures identifiable by flow visualization,
an unstable transition region (Kcr < K < Kh) in which there are QCS (quasi-coherent
structures) leading to mushroom-shaped coherent structures at K ≈ Kh, and an
increasingly chaotic region (K > Kh) where coherent structures undergo complex
interactions, eventually leading to separation and turbulence. It must be emphasized
that the two boundaries defined by K = Kcr , (line S) and K = Kh (line H) are not
sharp demarcation lines. They should be regarded as narrow fuzzy regions whose
extent depends on the observer’s ability to interpret ‘small disturbances’ and nearly
‘perfect’ mushrooms in laboratory experiments. It should also be noted that the line S
is assumed to be straight, whereas line H is not straight, particularly at lower values
of β, because of the second and higher terms of equation (1.1).

Sufficient evidence to exemplify the various events in each region in figure 2 is
presented in the remainder of the paper and the data obtained in the course of the
investigation are plotted in figure 17 (§ 3.2.4).
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Figure 3. A close-up view of three mushrooms and their contra-rotating vortices. The vortex tubes
are made visible by tilting the light sheet about 10◦ to enhance the glow that cylinder reflects back
to the vortex tubes. Second facility, A = 18.4 mm, D = 200 mm, f = 0.26 Hz, K = 0.58, β = 9956,
s/D = 0.088. In this and in all other photographs to follow, the direction of oscillation (flow or
cylinder) is perpendicular to the page.

The descriptions to follow are based on extensive video viewing and the information
extracted from it in terms of occurrence of various types of structures, mindful of
the fact that the vagaries of flow visualization do not always provide correct insight
into the actual physics. Furthermore, one can only repeat the complaint registered by
practically all experimenters on this subject that still photographs (printed from the
digitized frames of the video) do not convey as much information as motion pictures.
Furthermore, it will be nearly impossible to provide photographic evidence of the
events described for each and every data point. This will amount to reproducing about
800 000 frames that were used in the descriptions to follow. It is also understood that
no single realization at a given point in the (K, β)-plane can ever exactly repeat itself.
Thus, the figures should be regarded as examples of what might generally happen in
the vicinity of a point in the (K, β)-plane.†

The regions and boundaries noted above will be described in the following order:
mushroom-shaped coherent structures for K = Kh; inception of instabilities, the
delineation of K ≈ Kcr , and the evolution of quasi-coherent structures; the interaction
of mushrooms and other events for K > Kh, leading to chaos and, eventually, to
turbulence and separation; and, finally, the quantification of the lines of stability and
mushroom spacing. In photographs to be presented, the two-dimensional light sheet is
parallel to the page and the cylinder motion is always normal to the page. Individual
frames unfortunately lack the very vivid and far more convincing impressions gained
from watching the video tapes. Nevertheless, every effort is made to convey some
of this dynamic interaction through the use of the most representative succession of
photographs during one or more cycles in describing the flow in the (K, β)-plane. The
captions of the representative photographs show the most relevant parameters (test
facility, A, D, f, K , β, and, whenever applicable, s/D where s is the average mushroom
spacing).

3.1. Mushroom-shaped coherent structures on K = Kh and their evolution

Figure 3 shows three of a dozen of almost uniformly shaped and spaced mushrooms
near the crown of the cylinder (K = Kh = 0.58). Each is composed of two, relatively
weak, counter-rotating vortices and a stem which appears and disappears periodically

† We hope to make video clips available for viewing on a web site in the near future.
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as the neighbouring boundary layers converge and diverge. The leaning of the light
sheet backwards (about 5◦ to 10◦) relative to the page enables one to visualize the
smoothly integrated dye sheets. The occurrence of the Helmholtz instability on the
contra-rotating vortex sheets was not uncommon (see the mushroom on the right).
Figure 3 also shows that each mushroom has its own asymmetry with respect to a
vertical plane which persists over its lifetime but there is no average directional bias
at any spanwise position along the cylinder.

Honji (1981), working with relatively small β values and using the electrolytic
precipitation method, observed mushroom vortex chains lying in the tubular sheet.
The vortex tubes observed in the present investigation always had fairly smooth
surfaces as in figure 3. This may be a consequence of our use of dyes with much
higher rates of dispersion at larger β values (see Probstein 1995 for an elegant
discussion of radial and axial miscible dispersions).

3.1.1. How does a mushroom grow and sustain itself?

Mushrooms on the Hall line (i.e. in an established periodic flow field, characterized
by fixed values of Kh and β) come into existence through a number of cycles of
incremental growth (near U = Um) and decay (near U = 0) (where U is the velocity
of the ambient fluid) until they reach mature sizes and quasi-steady states. Then a
series of characteristic events help them to sustain themselves. Figure 4(a) shows
that the stems of the mushrooms are nearly devoid of dye at U ≈ 0 and there is
no feeding of the boundary layer fluid into the mushrooms. In fact, at this time
the mushrooms are not connected to the crown of the cylinder (see also figure 4e).
However, the mushrooms do not ‘move away from the cylinder in the direction of
its oscillation’, as imagined by Honji (1981). In fact, the tubes of contra-rotating
vortices come closer to the cylinder. Observations of video tapes show qualitatively
that the rate of rotation of vortices decreases. This may be partly due to the cut-off
of a new supply of vorticity, partly due to the diffusion of vorticity of the vortices
(mostly along the tube, as evidenced by the intensification of the dye along the
crown of the streak), partly due to the annihilation of vorticity in the overlapping
regions of the contra-sign vortices, and partly due to the relaxing (as opposed to
stretching) of the vortex tubes. This results in a decrease of the mutual induction
velocity of the vortices (and their images) and the distance between the vortex cen-
tres increases slightly due to the increase of the image-induced lateral velocities. At
this time, the mushrooms become most receptive to the infusion of new boundary-
layer fluid. As the velocity of the ambient fluid reaches a critical value (at about
T/8 every half-cycle), a lump of dyed fluid is thrust forward for a time interval
of ∆t ≈ T/10 from the boundary in an eruptive manner as seen in the video and
figure 4(b). The rhythmic ejection of the boundary-layer fluid is completed before
the velocity reaches its maximum at T/4. Clearly, the infusion of dye into the
mushroom is not a continuous process (this is where the power of video is most
welcome). Its clock-like regularity is indeed fascinating to observe. The start of the
eruption is accompanied by the dividing into two blobs of the previously ejected
fluid, now near the crown of the mushroom. Figure 4(c) shows that the injected dye
started moving up the stem towards the mushroom. Figure 4(d ) depicts the time
at which the stems are beginning to loose their identity and the mushrooms are
just beginning to expand laterally. Finally, the stems become completely devoid of
dye, as seen in figure 4(e), and shortly thereafter the mushrooms return to their
state shown in figure 4(a). It appears that there is an intricate phase relationship
between the occurrence of various elements of the characteristic events (maximum
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(a)

(b)

(c)

(d )

(e)

Figure 4. Successive frames show how the size and position of a mushroom are sustained through
the periodic injection of fresh momentum. When the injected dye almost reaches the crown of
the mushroom, it is divided into two parts, one captured by one of the vortices and the other by
its contra-rotating companion. The injection and stretching energize the vortices periodically and
maintain the size and position of the mushrooms more or less steady. Other details as figure 3.
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velocity, maximum receptivity of the mushroom to new injection, the dividing of
the injected fiuid into two blobs) which helps to synchronize the feeding mechan-
ism.

It appears that the boundary-layer fluid is provided to the mushrooms in finite
quantities each time the velocity of the ambient flow reaches about 0.5Um. The
details of flow within the ejected lump cannot be seen. However, it appears that
it transports sufficient momentum into the mushroom from the region where the
two lateral boundary layers collide. Partial evidence is also provided by the regular
breakup of the lump into two parts (always and only two parts) as soon as it reaches
the top of the mushroom. One part rolls off to the right and the other part (not
necessarily half) rolls off to the left. Observations show that the contra-rotating
vortices of the mushroom quickly energize and increase their rate of rotation. It
appears that the incremental infusion of mass and momentum into the mushrooms,
the impulse imparted to the contra-rotating vortices at times when the ambient
velocity reaches about 50% of its maximum, and the stretching of the vortices are the
mechanisms which sustain the mushrooms and the ‘tubes’ as long as the mushrooms
maintain a quasi-stable arrangement. The mechanism of periodic infusion of dye
(boundary-layer fluid) into the mushrooms occurs only at K = Kh. In other words,
it is unique to the fully grown mushrooms which are sustained by the prevailing
flow conditions at an appropriate threshold of Ta. It does not occur in the region
Kcr < K < Kh.

The mushrooms do not remain indefinitely in a quasi-stable state. There appear to
be some fundamental reasons for this: the unequal impulse imparted to the left- and
right-hand vortices in the mushroom (thought to be the cause of mushroom asymmetry
noted in connection with figure 3) and the instability of an ideal arrangement of
nearly symmetric contra-rotating vortices and their images, which lead to mushroom
merging, creation of new mushrooms, or mushroom breakdown.

3.1.2. Merging of the mushrooms

It is already apparent from the foregoing that mushrooms are not perfectly stable
structures even at K = Kh and there is considerable interaction between them on
either side of the Hall line. This will be illustrated here only at one Kh value even
though it occurred at all K and β values leading to mushrooms.

Figure 5(a) shows three mushrooms. They are more or less, but not exactly,
identical, as is often the case with all other mushrooms. We will now describe the
evolution of the interaction between the second and third (from the left) mushrooms
and their reduction to a single mushroom through merging. Figure 5(b) shows that
this pair approach each other at each U = 0 (when no stem is visible as in figure 5b)
and separate during the periods of U = Um as in figure 5(c). This rocking motion
continues with the result that the vorticity of the right-hand vortex of the left-hand
mushroom and the vorticity of the left-hand vortex of the right-hand mushroom
gradually annihilate each other in their overlapping regions (as in figure 5f ). Then, a
very interesting phenomenon happens. The counter-rotating vortex pair in figure 5(g)
is now fed by two stems: the left-hand vortex by the left-hand stem and the right-hand
vortex by the right-hand stem. This event continues for several more cycles, as seen in
figures 5(h) and 5(k ), and then there is only one stem and one mushroom as seen in
figures 5(n) and 5(p) during the periods of maximum velocity. It is also apparent that
the first mushroom remained largely unaffected by the merging of the neighbouring
pair.
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(a)
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(c)
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Figure 5. Even the perfect mushrooms merge: the evolution of this merging is shown in this figure.
It is particularly interesting that the two stems feeding the mushrooms (frames g, h) finally become
one (p) when the merging is complete. Other details as figure 3.

3.1.3. Representative mushrooms for Kh at larger β values

There is a consistent reduction in the scales (size and spacing) and a notable increase
in the mutual interaction of mushrooms with increasing β. The closer they are, the
stronger the interaction. Furthermore, their shape, orientation and symmetry are not
as uniform as in, for example, figures 4. Figure 6 shows representative mushrooms
recorded during part of a single cycle (at 32 ms intervals). Observations have shown
that the structures, regardless of the number of cycles, do not necessarily acquire the
same size and shape at the same time. Some grow larger and others grow to the
same size at a later time. This, once again, reinforces the point noted earlier that
the mushrooms are inherently unstable even on the Hall line and that the instability
increases with increasing β. Figure 7 corresponds to the point (0.169, 1.365× 106) on
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Figure 6. Representative mushrooms recorded during part of a single cycle (at 32 ms intervals).
The structures, regardless of the number of cycles, do not necessarily acquire the same size and
shape at the same time. Some grow larger and others grow to the same size at a later time. This
reinforces the notion that the mushrooms are inherently unstable even on the H line. Third facility,
A = 19.8 mm, D = 355.6 mm, f = 0.623 Hz, K = 0.35, β = 7.4× 104, s/D = 0.008.

H (see figure 2), which is more appropriate than Honji’s (1981) data (68.8 < β < 700)
for comparison with Hall’s (1984) analysis by virtue of its assumption of large β. The
characteristic features of the mushroom-shaped structures are apparent, but they are
far from regular. The average relative spacing between them (over twenty cycles of
observations, beyond the initial period of establishment) is about s/D = 0.005. Some
of the mushrooms occasionally rise above the others and then continuously evolve
during the cycle. Apparently, the structures at high β are not as regular as those
at lower β. This completes the discussion of the representative mushroom-shaped
coherent structures on the Hall line in figure 2.

3.2. Instabilities and quasi-coherent structures

Each test began at a point defined by (K, β) in figure 2. Experiments were carried
out either by maintaining β constant (i.e. the frequency of oscillation) and decreasing
K from an initial value of K > Kcr down to K values smaller than Kcr , or by
maintaining K constant and increasing β (i.e. the frequency f). Each change in either
K or β is followed by a long rest and ‘refueling’ (new dye introduction) period. In
the following, the inception of the instabilities near K = Kcr , the growth and decay
of the instabilities in the region Kcr < K < Kh, larger-scale instabilities in the region
K > Kh, and, finally, the quantification of the stability boundary and the wavelength
s/D are discussed.

3.2.1. Inception of instabilities and the delineation of K = Kcr

The line S (denoting stability) in figure 2 defines the approximate boundary that
separates the stable region on the left from the unstable region on the right. It is the
lower limit of K for a given β or the lower limit of β for a given K where either no
instabilities are created during the entire cycle or those created at U > 0.5Um barely
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Figure 7. These structures are at the highest β achievable in the experiments on the Hall line.
The characteristic features of the mushroom-shaped structures are still apparent but not as precise
as those of at lower β. Some of the mushrooms occasionally rise above the others and then
continuously evolve during the cycle. The average relative spacing between them is based on over
twenty cycles of observations. Third facility, A = 13.3 mm, D = 495 mm, f = 5.86 Hz, K = 0.169,
β = 1.365× 106, s/D = 0.005.

survive during the period of minimum ambient velocity. Part of the subjectivity, aside
from the human interpretation of the definition of the life of a disturbance or QCS,
comes from the fact that there cannot be a single line separating the stable region
from the unstable region due to the statistical nature of the intermittency of the
structures. In fact, the difficulty of the determination of the stability line cannot be
adequately emphasized. It depends not only on the parameters that can be controlled
but also on those which are, to all intents and purposes, beyond the capacity of the
experimenter to control (e.g. temperature gradients, residual background turbulence,
very small air bubbles, higher-order harmonics of the vibrations, nonlinear interaction
of various types of perturbations, just to imagine a few).

A serious attempt was made to define a line Kl to the left of which no disturbances
are observed at any time during at least forty cycles; to define another line, called
Kf on which about half (as judged by eye) of the disturbances (created by high
velocities) survived the period of maximum acceleration, and finally, to define a line
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Figure 8. The evolution of wave crests and streamwise vertical structures is shown as samples from
different runs as U approaches Um. These disappear quickly as U decreases to 0. Except for the
position and direction of the streamwise single vertical structures, the flow state repeats indefinitely.
Third facility, A = 6.8 mm, D = 355.6 mm, f = 1 Hz, K = 0.098, β = 1.2× 105.

Figure 9. The crests of a large number of waves spanning the width of the light sheet are shown at
U = Um for K = 0.045 and β = 1.365× 106 (a point slightly to the right of S). They disappear as
U approaches zero. The appearance of these waves and the growth of structures from their crests
are entirely consistent with the centrifugal nature of the instability leading to coherent structures
on the Hall line. Third facility, A = 3.4 mm, D = 495 mm, f = 5.86 Hz, K = 0.045, β = 1.365× 106.

Kg on which the disturbances existed at all times, even though not at the same
apparent size during the periods of maximum and minimum velocity. This effort
turned out to be extremely complex and not deterministic enough in view of the
scatter in the data. It was eventually decided to reduce the boundary to a marginal
or fuzzy region, represented by an average line S or the relationship Kcr–β.

First, it is necessary to describe the nature of small finite disturbances or the
smallest observable structures that appear only during the periods of high ambient
velocity (U larger than about 0.5Um). The structures always grow at a wave crest.
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(a)

(b)

(c)

(d )

(e)

( f )

(g)

(h)

Figure 10. The evolution of disturbances at a smaller Stokes number shows that first the wave
crests appear as the velocity begins to increase, and then the small structures grow, on some or on
all of the crests. Then they begin to decay and rapidly disappear as the velocity approaches zero.
This cycle continues indefinitely, with minor variations in the shapes of the structures. First facility,
A = 9.6 mm, D = 171.6 mm, f = 0.187 Hz, K = 0.443, β = 5221.

The number of crests along the wave spanning the crown of the cylinder depends on
K and β. For a wave with multiple crests, the wavelength decreases with increasing
β for a given K . Figure 8 shows the evolution of wave crests and streamwise vortical
structures for K = 0.098 and β = 1.2 × 105 (a point slightly to the left of S on
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figure 2). As noted earlier, these disappear quickly as U → 0. Figure 9 shows the
crests of a large number of waves spanning the light sheet as U approaches Um for
K = 0.045 and β = 1.365×106 (a point slightly to the right of S). These too disappear
as U approaches zero. Finally, figure 10 shows the evolution of the instability for
K = 0.443 and β = 5221. First the wave crests appear as the velocity begins to
increase, as in figure 9, and then the small structures grow, on some or on all of the
crests (figure 10c). The structures continue to grow, as in figure 10(d, e), then begin
to decay, as in figure 10(f, g), and finally completely disappear, as in figures 10(a)
and 10(h), as the velocity goes through zero. This cycle continues indefinitely, with
minor variations in the shapes of the structures, as long as K and β are maintained
constant. The appearance of waves and the growth of structures from their crests are
entirely consistent with the centrifugal nature of the instability, eventually leading to
coherent structures on the Hall line.

The foregoing represents only a few examples used in the delineation of the
stability line. Many more experiments were carried out in the range of 103 < β <
1.4 × 106, including those during which no structures were created at any period of
the flow regardless of the cycles of oscillations. These observations were particularly
significant in demonstrating the fact that there is indeed a stable region in which
no disturbances, either due to Taylor–Görtler instability or boundary-layer type
instability, can temporally grow to finite amplitude at any time and in any cycle
regardless of the number of cycles (minimum 50 cycles).

3.2.2. Instabilities in the region Kcr < K < Kh

Only the most representative figures showing the character of the quasi-coherent
structures will be presented. The structures between the S and H lines grow and
diminish in size during the periods of high and low velocity. Figure 11 shows the
sequential (but not at equal time intervals) evolution of the structures in a given cycle
between the two instances of U = 0. The mushroom-like structures grow in size and
number as the velocity increases. Then they begin to diminish and return to a state
not very far from, but not identical to, the first frame (figure 11a). Figure 12 shows,
at a larger K and β, representative structures (at different times in a cycle) which are
very similar to those encountered in oscillating flow about plates (Sarpkaya 1993).
Finally, figure 13 shows the sequence of flow structures at U = 0, U = Um/2, and
U = Um for a much larger β.

The primary characteristics of the structures between the S and H lines for a given
β are that for K closer to Kcr , the structures strongly evolve during a given cycle
and rarely return to the same shape and position they had at the start of the cycle.
As K increases towards Kh, they become more regular (like small mushrooms) and
increase in size and number. Thus, there is a continuous, but complex, evolution of
structures from a transverse wave, on or about the S line, to a series of highly regular
mushrooms on the Hall line. However, even on the Hall line the mushrooms are
subject to mutual interactions.

In the light of the foregoing, it appears that the threshold value of the Taylor
number found by Hall (1984) corresponds only to points on the H line where
the mushrooms can sustain themselves in the manner described earlier. When the
centrifugal force at U = Um is large enough to give rise to structures (not necessarily
mushroom-shaped) but not large enough to trigger a feeding mechanism to fully
sustain them near U = 0, the structures become quasi-coherent, with ever changing
sizes and shapes. Representative examples of these have been presented above. It
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(a)

(b)

(c)

(d )

(e)

( f )

(g)

Figure 11. Photographs show in sequence (but not at equal time intervals) the evolution of the
structures in a given cycle, starting at U = 0. The mushroom-like structures grow in size and number
as the velocity increases. Then they begin to diminish and return to a state not too far from the
first frame. First facility, A = 13.7 mm, D = 171.6 mm, f = 0.187 Hz, K = 0.50, β = 5221.
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(a)

(b)

Figure 12. The two photographs show at U = Um two highly distorted mushroom-like structures
which are very similar to those encountered in oscillating flow about plates. They eventually
transform into regular mushrooms as K increases to about 0.6. Second facility, D = 152.4 mm,
f = 0.45 Hz, β = 9956: (a) A = 10.2 mm, K = 0.42; (b) A = 8 mm, K = 0.33.

(a)

(b)

(c)

Figure 13. The evolution of structures at a larger Stokes number at (a) U = 0, (b) U = Um/2
and (c) U = Um in a half-cycle. Third facility, A = 11 mm, D = 495 mm, f = 3.21 Hz, K = 0.14,
β = 7.48× 105.

appears that an analysis of the transient growth signature of the centrifugal instability
is needed to theoretically delineate the region between the S and H lines.

3.2.3. Instabilities in the region K > Kh

In the region to the right of H one encounters, with increasing K , first mushroom-
shaped structures, then quasi-coherent structures, and eventually, chaotic motion, and
if K is large enough, turbulence and separation. The experiments reported here are
confined to K < 0.8.

Figure 14 shows, for β = 3 × 104, how rapidly the structures change even though
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(a)

(b)

(c)

Figure 14. A sequence showing the rapid interaction between the structures and the vortex tubes
on the right-hand side of the Hall line (they are only 3 ms apart). Second facility, A = 22.5 mm,
D = 228 mm, f = 0.56 Hz, K = 0.62, β = 3× 104.

they are only 3 ms apart. Vortex tubes are identifiable on some of the structures.
Figure 15 shows, for β = 1.2 × 105, the intermingling of the vortex tubes and their
extremely rapid wrapping–unwrapping motion during one cycle. Note the striking
similarity between the figures 15(a) and 15(e) and the fact that for the K and β
values under consideration the structures rise renewed from the chaotic motion to
start another cycle. Eventually, they bear no resemblance to the structures which
occurred five or ten cycles back. Finally, figure 16 shows, at β = 1.365 × 106, the
highest β encountered in the experiments, several instants where one can observe parts
of one or more highly deformed mushrooms which rapidly change in the subsequent
frames.

3.2.4. Quantification of the stability boundary

The entire data set obtained in the course of this investigation is shown in figure 17
(a replot of figure 2, but with data). The equation that best represents the line S is

Kcrβ
2/5 = 12.5. (3.1)
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(a)

(b)

(c)

(d )

(e)

Figure 15. A sequence showing how quickly the vortex tubes undergo wrapping and unwrapping
around each other during a single cycle. Note the striking similarity between (a) and (e) and the fact
that for the K and β values under consideration the structures recover from a highly chaotic state
only to start anew from a nearly identical initial state. Third facility, A = 29.5 mm, D = 355.6 mm,
f = 1 Hz, K = 0.52, β = 1.2× 105.
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Figure 16. Representative photographs show, at the highest β encountered in the experiments,
several instants where one can observe parts of one or more highly deformed mushrooms in the
region to the right of the Hall line. Third facility, A = 23.6 mm, D = 495 mm, f = 5.86 Hz, K = 0.3,
β = 1.365× 106.

The line H is, as noted earlier, represented to a first order of approximation by

Khβ
1/4 = 5.78. (3.2)

The Reynolds number along the stability line increases as Re = 12.5β3/5. It rises from
300 at β = 200 to about 50 000 at β = 106.

In the light of the foregoing, brief comments will be made regarding the previous
works. Sarpkaya (1986), using a sinusoidally oscillating flow about a smooth cylinder,
found that the onset of the instability spans the interval K = 0.6 to 0.82 for β =
1035. This is close to Kcr = 0.78 at β = 1035. Similarly, for β = 1380 (Kcr =
0.69) experiments exhibited a region of hysteresis as K was increased in small
steps from 0.4 to about 1. Kcr = 0.69 corresponds to the first deviation from the
maximum of the first rise in the drag coefficient above the Stokes (1851)–Wang
(1968) line (see figure 2 in Sarpkaya 1986). Furthermore, the nature of the instability
due to its sensitivity to disturbances is such that the occurrence of a region of
hysteresis is not entirely unexpected. Honji (1981) observed, in connection with
his figure 3 (K = 1.16 and β = 599), that the separated dye sheet is ‘slightly
distorted wavily’. This particular data point at a K value slightly smaller than Kh

(= 1.218 for β = 599) is shown in figure 17, and, according to our stability line,
one should indeed expect to see the type of ‘wavy’ instability observed by Honji. It
is also clear that within the range of the β values used by Honji (68.8 < β < 700),
near the intersection of the S and H lines, Honji could not have seen enough
quasi-coherent structures, except as noted above. The wavelength of the instability
observed by Honji is approximated from his figure 3 as s/D = (1.95 mm/37.7 mm) =
0.52.
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3.2.5. Quantification of the mushroom spacing

The wavelength s/D of the mushroom-shaped coherent structures is shown in
figure 18. As it was increasingly difficult to quantify s/D at higher β values, the data
for β larger than about 105 represent the averages of several measurements by two
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independent workers. An empirical relationship of the form

s

D
β3/5 = 22 (3.3)

represents the mean line through the data within the range of β values encountered.
It suggests that the structures at much larger β values of industrial significance will
indeed be extremely close together, leading to intense interaction between myriads of
vortex tubes with their contra-rotating vortices. The state of such a flow and what it
might do to the shear stresses on the boundary can only be imagined.

4. Concluding remarks
Experiments in three different facilities through the use of flow visualization have

clarified the nature of the small-amplitude oscillatory flow over smooth circular
cylinders. The most interesting result has been the discovery of two related facts: the
flow to the left of the Hall line is not stable, and a fully grown mushroom is not the
only form of instability. There is a stable region to the left of S in which no discernible
flow structures occur near the crown of the cylinder during any part of the oscillation
cycle. There is an unstable region between S and H where many forms of quasi-
coherent structures occur (for β larger than about 100). There is a marginal-stability
region between the stable and unstable regions in which small structures appear and
disappear as the ambient velocity goes from maximum to zero. On the Hall line,
structures take the form of mushrooms even at the highest β encountered in these
experiments. In the light of the extensive observations, it appears that the threshold
value of the Taylor number found by Hall (1984) corresponds only to points on the
H line where the mushrooms can sustain themselves through a rhythmic feeding of
the boundary layer fluid. When the centrifugal force at U = Um is large enough to
give rise to structures (not necessarily mushroom-shaped) but not large enough to
trigger a rhythmic feeding mechanism to fully sustain them near U = 0, the structures
acquire myriads of quasi-coherent forms, with ever changing sizes and shapes, some
of which are reminiscent of the quasi-coherent structures in steady flow over flat
walls.

To the right of the Hall line, instabilities take many forms and, with increasing
K , fall under the influence of turbulence and separation and all of their attendant
consequences (currently under investigation).

The tracking and quantification of coherent and quasi-coherent structures at any
point in the (K, β)-plane through the use of direct numerical simulations might
help in understanding the many fascinating characteristics of the mushroom-type
coherent structures and the existence of an unstable region composed of quasi-
coherent structures.

An effort was made to measure the drag of circular cylinders (smooth, rough)
subjected to sinusoidally oscillating motion, particularly at large values of β, to
gain some insight into the magnitude of their damping and, in particular, into the
relationship between the deviation of the measured drag values from the Stokes–Wang
stable laminar flow solution (see e.g. Sarpkaya 1986) and the instability of the flow
under discussion. The experiments, confined to one relative roughness (k/D = 0.01
where k is the mean roughness height of sieved sand), revealed no stable region for
the K and β values encountered in our experiments. These are not described here in
detail because more extensive experiments are now underway with smaller roughness
elements, at smaller K values. These and the effect of coherent and quasi-coherent
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structures on the hydrodynamic damping of compliant systems will be the subject of
a future publication.

This work began in 1993 in connection with a special programme on the stability
of periodic flows supported by the National Science Foundation, Office of Naval
Research, and the Naval Postgraduate School. This support is gratefully acknowl-
edged. The constructive comments of the reviewers are sincerely appreciated. Finally, a
special thanks are extended to Mr Phil Parker, for his assistance with the experiments.
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